Доставка цветов в Севастополе: SevCvety.ru
Главная -> Радио

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 [40] 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68


действия, так как передача идет на неизменном наивысшем уровне излучаемых колебаний.

Н. - Таким образом, в этой системе модуляции несущая частота меняется в такт с низкой частотой. Но как передаются относительные изменения интенсивности модулирующего напряжения?

Л. - Степенью отклонения частоты от того значения несущей, которое она имеет в отсутствие модуляции. При слабом

Рис. 121. При частотной модуляции амплитуда несущей остается неизменной, но ее частота изменяется вокруг некоторого среднего значения в такт со звуковой модуляцией.



звучании отклонение (пли девиация) частоты также невелико. Мощные же аккорды вызывают значительную девиацию частоты.

Н. - Следовательно, ритм девиации несущей частоты будет определяться частотой модулирующего напряжения, а величина девиации - амплитудой модулирующего напряжения.

Л. - Ты хорошо понял, Незнайкин, принцип ЧМ.

Н. - И так как нет причин, ограничивающих величину девиации частоты, можно, мне кажется, сохранить истинное соотношение интенсивностей или, иными словами, правильно воспроизвести динамический диапазон звучания.

Л. - Безусловно. Именно поэтому для частотной модуляции используется метровый диапазон волн, так как здесь полоса частот не ограничена.

ПРОСТЕЙШИЙ ЧМ ПЕРЕДАТЧИК

Н. - Частотная модуляция необыкновенно привлекательна. Я хочу изучить ее возможно глубже. И для начала я хотел бы знать, как устроен Ч,М передатчик.

Л. -Твоя любознательность не имеет границ, дружище. Однако я постараюсь ее удовлетворить и покажу, как можно соорудить опытный маломощный передатчик с помощью электростатического микрофона.

Н. - А что это еще за устройство?

Л.- Просто-напросто конденсатор из двух обкладок, одна из которых неподвижна и состоит из массивной металлической пластины, в то время как другая очень эластична и является тонкой металлической мембраной, натянутой параллельно первой обкладке.

Н. - Я догадываюсь, что это устройство является конденсатором, емкость которого изменяется под воздействием звуковых колебаний, заставляющих вибрировать эластичную мембрану.

Л. - От тебя ничего не скроешь, дружище. Ты это так хорошо понял, что тебя не удивит включение такого микрофона



параллельно колебательному контуру лампового генератора (рис. 122). Изменение емкости микрофона вызовет соответствующее изменение частоты лампового генератора.

Н. - И мы получим частотно-модулированные колебания. Вот не ожидал, что это так просто!



Рис. 122. Схема простейшего частотно-модулированного передатчика. Частота генерируемых колебаний изменяется с помощью электростатического (конденсаторного) микрофона, включенного параллельно емкости контура.

i-звуковые колебания; 2-микрофон.

Л. - Схемы настоящих ЧМ передатчиков значительно сложнее. Но это не имеет для тебя особого значения.

Н. - Конечно. Но меня очень интересует способ приема этих необычных колебаний.

Л. -Потерпи до следующей беседы, и мы рассмотрим этот вопрос.



БЕСЕДА ДВАДЦАТЬ ПЕРВАЯ

После изучения принципов передачи с частотной модуляцией наши юные друзья рассмотрят различные особенности ЧМ приемников, в частности каскадную схему, дискриминатор, детектор отношений, ограничитель и пр...

ВСЕ ОТНОСИТЕЛЬНО




Незнайкин. - Все, что ты объяснил в последний раз о частотной модуляции, не давало мне покоя. Все эти понятия довольно неопределенны. Различным интенсивностям низкой частоты соответствует более или менее значительная девиация несущей частоты. А частоте модулирующего напряжения соответствует... Как это сказать?., частота изменения частоты несущей?

Любознайкин. - Хотя ты и не очень изящно излагаешь свои мысли, но говоришь вполне здраво.

Н. - Я думал также о способах приема ЧМ колебаний. Полагаю, что обычные радиоприемники, предназначенные для амплитудной модуляции, не годятся для этой цели. Ведь если продетектировать такую модулированную высокую частоту, у которой все амплитуды одинаковы, получится постоянное напряжение, а не низкочастотное модулирующее. Прав я или нет?

Л. - Безусловно прав. Обычные схемы детектирования при ЧМ модуляции не применяются. Но это не единственная особенность ЧМ приемников.

Н- Я не вижу причин отказа от классической схемы супергетеродина, если не считать детекторного каскада.

Л. - Супергетеродин является схемой, повсеместно принятой для частотной модуляции. Но и сама схема и ее элементы существенно отличаются от классических. Ты, кажется, забыл, что передача осуществляется в метровом диапазоне волн, т. е. на частотах порядка сотен миллионов герц, и что, кроме того, боковые полосы простираются в стороны от несущей на сотню тысяч герц вместо тощих 4 500 гц при AM модуляции.

Н. - Правильно, об этом я не подумал. Следовательно, нужно предусмотреть как в высокой, так и в промежуточной частоте колебательные контуры с полосой пропускания порядка 200 кгц.

Л-Это так. Даже до 300 кгц. И так как это было бы крайне трудно осуществить на промежуточной частоте 465 кгц, для усилителя промежуточной частоты выбрана частота 8,4 Мгц (в телевидении иногда 6,5 Мгц).

Н. - Мне это ясно. Для трансформатора промежуточной частоты, настроенного на 465 кгц, полоса пропускания 300 кгц составляет больше половины резонансной частоты, в то время как для 8,4 Л1гч та же полоса пропускания не превышает 4%.

Л. - Все относительно... Но каждая медаль имеет обратную сторону. Прн усилении широкой полосы частот нельзя получить



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 [40] 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68



0.0106
Яндекс.Метрика